harmonic oscillator

英 [hɑːˈmɒnɪk ˈɒsɪleɪtə(r)] 美 [hɑːrˈmɑːnɪk ˈɑːsɪleɪtər]

简谐振子;谐振(荡)器(发生器)

化学



双语例句

  1. No atom behaves precisely like a classical harmonic oscillator.
    任何一个原子的性能都不会同经典谐振子完全相同。
  2. Studies of Two-Dimensional Harmonic Oscillator in Non-Commutative ( Phase) Space
    非对易空间(相空间)二维谐振子能谱及波函数的研究
  3. In this paper, we investigate the higher order squeezing properties of even and odd coherent states of a harmonic oscillator in a finite dimensional Fock space.
    研究了奇偶相干态的位置熵和动量熵的压缩特性,并讨论了位置熵压缩、动量熵压缩与广义坐标、广义动量压缩性的关系。
  4. The energy splitting of the coupling harmonic oscillator in non-commutative spaces are discussed.
    对于耦合谐振子系统,系统能谱与耦合项有关,并存在极小值。
  5. The Schrdinger equation is given directly from the classical Hamiltonian function of a damping harmonic oscillator, and its solution is obtained by the separation of variables.
    写出阻尼谐振子的哈密顿函数,对其直接量子化,用分离变量法得出了薛定谔方程的解。
  6. The calculation method for the vibrational partition sums Qvib used is the harmonic oscillator approximation.
    其中,转动配分函数考虑了离心扭曲修正,振动配分函数采用谐振子近似。
  7. Quesne ring-shaped spherical harmonic oscillator potential and pseudospin symmetry
    Quesne环状球谐振子势场中的赝自旋对称性
  8. For Resource-Constrained Multi-Project Scheduling Problem ( RCMPSP), a simulated harmonic oscillator algorithm was introduced.
    针对资源受限多项目调度问题(RCMPSP),介绍了一种模拟谐振子算法。
  9. The article studies a simple method for any energy level of three dimensional harmonic oscillator in uniform magnetic field.
    研究了任意能级下均匀磁场中三维谐振子一级能量修正值的简便方法。
  10. Calculation of matrix elements of coordinate operator of harmonic oscillator with integer power by coherent state functions
    用相干态函数计算谐振子任意次幂坐标算符的矩阵元
  11. For a harmonic oscillator the energy levels are evenly spaced.
    对谐振子来说,能级是等间隔的。
  12. The method of using node theorem to solve the one-dimensional harmonic oscillator with a deta potential was presented and the reliable accurate eigenenergies and eigen-wave functions were given.
    探讨了用节点法求解存在势时的一维谐振子势,并给出精确可靠的能级及本征波函数。
  13. The harmonic oscillator is an exceptionally important example of periodic motion.
    谐振子在周期运动中是特别重要的。
  14. The dynamical model and the oscillation-rotation model of particle are derived from the dynamical mechanism of spontaneously break symmetry, and its simplified form is a harmonic oscillator model.
    简述了已知的粒子质量公式,由动力学的对称性自发破缺机制导出粒子的动力学模型和振动-转动模型,其简化形式是谐振子模型。
  15. Mesoscopic double resonance circuit with complicated coupling is quantized by the method of harmonic oscillator quantization and linear transformation.
    对介观复杂耦合电路作双模耦合谐振子处理,将其量子化。
  16. Algebraic Approach to Wave Function of Harmonic Oscillator and Recursion Relations of Hermite Polynomial
    简谐振子波函数的代数解及Hermite多项式的递推
  17. In this section we will increase our quantum-mechanical repertoire by solving the Schroedinger equation for the one-dimensional harmonic oscillator.
    本节我们将用求解一维谐振子的薛定谔方程以提高我们的量子力学技能。
  18. The energy eigen-values and eigen-functions, for a single particle located in single shell of harmonic oscillator and moving in triaxial potential, are calculated.
    计算了单核子在三轴形变势中、处于单个谐振子壳层空间的能量本征值和本征态。
  19. Double wave function quantum theory is applied to describe the motion of three dimension isotropy charged harmonic oscillator in a uniform magnetic field.
    讨论均匀磁场中三维各向同性带电谐振子的双波函数描述,得到量子和经典极限条件下的结果。
  20. A binary system of numbers is used in many computers. We can work out positions of a harmonic oscillator by numerical methods.
    多种电脑都采用二进位记数法。我们可以按数值方法计算简谐振子的位置。
  21. Exact wave function of the coupled harmonic oscillator with time-dependent mass and frequency
    质量和频率均含时的耦合谐振子的严格波函数
  22. Stochastic Resonance in Underdamped Harmonic Oscillator with Time Modulated Cross-correlated Dichotomous Noise
    周期调制互关联双态噪声驱动欠阻尼谐振子系统的随机共振炭粒传声器中的短周期电阻变化
  23. A Formula of Energy Level of Three Dimensional Harmonic Oscillator in Uniform Magnetic Field
    均匀磁场中三维谐振子一级能量修正值的解析式
  24. A general recurrence relation for the radial matrix elements of harmonic oscillator;
    给出了一类带双指标的常系数线性递推关系的一般显式解。
  25. A model of sound absorption coefficient based on damped harmonic oscillator and its application
    基于阻尼谐振子的吸声系数模型及其应用
  26. We can work out positions of a harmonic oscillator by numerical methods.
    我们可以按数值方法计算简谐振子的位置。
  27. Thus far we have negated frictional effects in the harmonic oscillator.
    到现在为止,我们一直没有考虑谐和振荡器中的摩擦效应。
  28. Energy Splitting of Coupling Harmonic Oscillator in Non-commutative Space
    非对易空间中耦合谐振子的能级分裂
  29. This is a most useful form of the harmonic oscillator Hamiltonian and it will be encountered in several subsequent developments.
    这是谐振子哈密顿算符最有用的形式,在下文中还会碰到这个表达式。
  30. Thermodynamical property of the harmonic oscillator with electrical charge in the electric field under high temperature and weak degeneration
    电场中带电谐振子在高温弱简并情况下的热力学性质